
Final Report

Title:   Optimal Design for MIMO Radar Tracking Systems

Contract Number: 

AFOSR/AOARD Reference Number: AOARD044041

AFOSR/AOARD Program Manager: TaeWoo Park, Ph.D.

Period of Performance: October 2004  November 2005

Submission Date: June 14 2005

PI:  Professor Langford B White, The University of Adelaide
CoPI: Dr Pinaki S Ray, The University of Adelaide



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
30 OCT 2007 

2. REPORT TYPE 
Final 

3. DATES COVERED 
  23-06-2004 to 14-06-2005  

4. TITLE AND SUBTITLE 
MIMO Coded Radar Waveform Design for Optimal Tracking 

5a. CONTRACT NUMBER 
FA520904P0418 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Lang White 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Adelaide University, Dept of Electrical and Electronic Engineering,North
Tce,Adelaide, ,SA,AU,5005 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AOARD, UNIT 45002, APO, AP, 96337-5002 

10. SPONSOR/MONITOR’S ACRONYM(S) 
AOARD 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
AOARD-044041 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
A conceptual framework for the design of transmit signals for MIMO radar systems as developed for
communication signals has been formulated. This was achieved by constructing a generalized matched
filter in analogy of the usual case. The corresponding maximum likelihood receiver was studied in detail
and shown this to be optimal in accordance with the Cramer-Rao lower-bound criterion. Mathematics for
defining and generating coding coefficients was developed. Tracking of a single target has been treated
within this framework in terms of state equations. A tracker defined by Kalman predictor has been
introduced. A channel/target model involving both linear and nonlinear dynamics has been studied. 

15. SUBJECT TERMS 
Diversity in Communication Systems, MIMO Systems, Multicarrier Systems, Spread Spectrun Systems 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

36 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Objectives 

Concepts of SpaceTime Coding (STC) for communication signals have been well researched and implemented in 
the domain of MIMO telecommunication systems.  The aim of this project has been to explore how far such signal 
design aspects could be carried over to MIMO radar systems for exploiting the additional degrees of freedom 
introduced by STC. Examples of MIMO radars are phased arrays and netted radars in the context of network centric 
warfare.  The fundamental problem here is to answer what is an optimal radar receiver in the context of signal 
processing and how to solve the mathematical intricacies of coding. Once this issue is addressed, one would like to 
examine the performance of such a receiver for various radar related applications, for example for target tracking.  

Status of effort

We have presented in the Conferences all our research results.  We will be extending this work in further depth and 
have added a section in this regard on future direction at the end of this report for perusal. It is our objective to 
consolidate all existing work in an archival journal paper to be submitted in 2006. There remain several remaining 
unsolved problems, mainly in respect to the solution to the fundamental optimisation problems arising from the 
work.

Abstract

The conceptual framework for designing transmit signals for MIMO radar systems in terms of the techniques of STC 
as developed for communication signals has been formulated.  This is achieved by constructing a generalized 
matched filter in analogy of the usual case. We have studied in detail the corresponding maximum likelihood 
receiver and shown this to be optimal in accordance with the CramerRao lower bound criterion.  We have developed 
the mathematics for defining and generating the coding coefficients.  Tracking of a single target has been treated 
within this framework in terms of state equations.  A tracker defined by Kalman predictor has been introduced. A 
channel/target model involving both linear and nonlinear dynamics has been studied. We have briefly touched on the 
implication of STC for transmit beam forming.

Personnel Supported

The research has been carried out by the PI (Professor L.B White) and his associate (Dr. P.S Ray).

Publications

The following conference papers (refereed) have appeared to date: 

Proceedings  Second  International  Waveform Diversity   and  Design  Conference,  LihueHawaii   (January  2006)    
“Optimal Code Design for MIMO Radar – Optimal Receivers”:  L.B.White & P.S.Ray.

Proceedings 38th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, pp.973977 (710 Nov 
2004) Invited Paper   “Signal Design for MIMO Diversity System”: L.B.White & P.S.Ray.

Proceedings of the First Workshop on Progress in Radar Research 2005 (PIRR05) held at the Defence Science and 
Technology Organisation, Edinburgh, South Australia, November 2005.  "Optimal Waveform Design for MIMO 
Tracking Radar", L. B. White and P. S. Ray. (Refereed on abstract only)

Proceedings   First   International   Conference   on   Waveform   Diversity   &   Design,   Edinburgh   (November   2004)    
“Receiver Design for MIMO Tracking Radar”: L.B.White & P.S.Ray



Interactions

As noted above the results of the research have been presented in the First and Second International Conference on 
Waveform Diversity and Design (Dr. P.S.Ray) and in the Asilomar Conference (Prof. L.B.White) which was an 
invited session.  There has been considerable scientific interaction with international experts at the Conferences as 
described in the following.

First, Dr. Ray had a brief discussion with Dr. Mike Wicks (AFRL) who advised to keep him uptodate with our 
further progress in the research. He has assured his support for any purpose when required. He endorsed a “short” 
visit by Dr. Ray to Hanscom (AFRL) in order to create an opportunity for his participation at the upcoming SAM 
2006 Workshop (Sensor Array and MultiChannel Signal Processing). This is subject to the immediate availability 
of funding from AFRL, which is being explored by Dr. Rangaswamy (AFRL).  

Dr. Marshall Greenspan, Technical Director of Northrop Grumman Corporation, indicated to Dr. Ray that he 
intended to draw the attention of some group in the Ohio State University to the expertise in Adelaide in MIMO 
coding techniques for possible future collaboration.  They are planning some activity on MIMO systems for short 
range applications. 

A promising development has come from Professor Chris Baker in University College London.  He wanted us to 
submit a program of research on coding of MIMO radars for collaborative work. His group will undertake 
experimental investigations in this area as they have hardware designing expertise. We are following up this in due 
course.

Following the Asilomar conference in 2004, Dr Rick Blum from Lehigh University, USA invited Prof White to be an 
associate investigator on a MURI application for MIMO radar system design. This application was unsuccessful but 
did serve the purpose of familiarising the research teams at each institution about each others' work.

New

The work undertaken here falls under the category of  “enabling research” and as such it is early to assess at present 
its impact in the field.  We can only vouch for its originality by our publications. We believe that our work is the first 
to use a model based approach to extend earlier work by David Kershaw and Rob Evans (IEEE Trans,. on 
Information Theory, 1994) to the MIMO case. We also believe that we are the first to link the use of unitary 
transmitter codes to obtain a simple correlation based receiver which achieves close to maximum likelihood 
performance. This result has the added implication that obtaining transmit directionality by use of nonunitary codes 
may lead to either the requirement for an excessively complicated optimal, or perhaps poorly performing suboptimal 
MIMO receiver.

Honors/Awards

This research program is at its infancy at the present stage and as such this criterion seems not to be applicable.

Archival Documentation

The research publications in refereed Conferences are enclosed.

Software and/or Hardware

We have developed experimental software in matlab to simulate a single target MIMO transmitter and receiver 
baseband system.



Future Directions

At this stage I will note the following areas for immediate investigation:

� We need to sharpen our results for the tracking application. A preliminary study was undertaken in this 
direction in the paper presented at the Edinburgh Conference (2004).  In particular, there are issue of the 
effect of Doppler sidelobes on the receiver parameter estimation which we need to address properly. Also, 
it is not clear whether the resulting code optimisation problem eeven has a feasible solution, and some 
imposed code constraints may need to be relaxed.

� We have just touched in our present work the implication of MIMO coding for the transmit beam forming. 
We need to develop this aspect fully. The incorporated explicit transmitter beamforming  into our system 
model has the advantage of permitting transmitter bean control whilst still retaining near ML receiver 
performance enabled by the use of orthogonal transmitter codes. 

� The questions raised in the conferences prompt us to take into account clutter analysis for the receiver 
performance, a significant issue in the radar context. We have neglected this sofar in our work, as we have 
focussed on airborne targets.

� We have as yet to deal with multiple target tracking, where we conjecture that the additional degrees of 
freedom offered by MIMO systems will lead to considerable benefits.

The fundamentals of this research fall in the category of statistical signal processing.  We have already initiated 
some discussions with Professor Eric Moulines (ENST, Paris) in this context. We intend to introduce Monte Carlo 
techniques for multiple target simulations and  the associated optimization technique in future.  Profesor Moulins’s 
group has international expertise in this area. Prof White will be hosted by Prof Moulines during his sabbatical in the 
first half of 2007. We will be seeking funding to permit Dr Ray to visit for an extended period so that work on 
multiple target tracking can be advanced.
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Receiver Design for MIMO Tracking Radar
Langford B White and Pinaki S Ray

School of Electrical and Electronic Engineering, The University of Adelaide 5005, Adelaide, South
Australia

{lwhite,pray}@eleceng.adelaide.edu.au

Abstract— The paper is the first in a series of three which
address the problem of radar transmitter and receiver de-
sign for MIMO (multiple transmit and receive antennae)
tracking systems. This paper considers the receiver design
problem. The method described consists of a generalised
matched filter receiver which produces approximate maxi-
mum likelihood estimates of the target’s delay and doppler,
and the spatial wavenumber (angle of arrival) and its time
derivative. The paper argues that this approach is novel
in the sense that it appropriately combines the usual single
antenna matched filter receiver, and the beamforming re-
quired for the multiple antenna case. Simulation results are
used to assess the performance of the proposed method.

I. Introduction

There has been considerable recent interest in the use of
transmit and receive antenna arrays to improve the detec-
tion and tracking performance of radar systems, in partic-
ular the recent emergence of a number of dedicated work-
shops addressing this problem. Whilst the waveform de-
sign problem has been considered for single transmit an-
tenna tracking systems (see eg [2]), there has been little
attention paid to the corresponding problem for MIMO
(Multiple-Input, Multiple-Output) systems. Recently, the
corresponding problem for MIMO communications systems
has been considered [3], although there are significant dif-
ferences between the communications and radar problems.

The use of antenna arrays permits not only the estima-
tion of the targets’ range and radial velocity, but also its
spatial wavenumber which is related to the target position.
The time derivative of the wavenumber can also be esti-
mated giving information on the angular velocity of the
target with respect to the antenna array. An approxima-
tion to the MIMO antenna data likelihood for a single tar-
get model, leads to a generalised matched filter receiver
architecture consisting of N matched filters for each of the
N receiver antennae. The outputs of these N2 matched
filters are coherently combined to yield a statistic which
can be maximised to yield the required estimates. Due to
the approximation made in deriving the statistic, bias will
generally be present in the estimates, especially for small
antenna arrays. Local maxima can also be a problem, es-
pecially when estimating the velocity parameters.

In this paper, we have made no attempt to choose the
transmitted signal waveforms in order to optimise the re-
ceiver performance. In [6], we derive approximate Cramer-
Rao bounds for the receiver presented here, and show how
the transmitted waveforms can be chosen to minimise a

weighted mean-square error measure for the estimated pa-
rameters. In [7], the tracking problem is addressed, includ-
ing adaptive waveform design to optimise tracking perfor-
mance.

II. Signal Model

Consider an linear equispaced array of N sensors located
along the y axis as shown in figure 1. The position of the
n-th sensor is (n−1)dŷ where d is the element spacing and
ŷ is the unit vector in the y direction. We will transmit suc-
cessive blocks of M pulses, each of duration T seconds from
each antenna. These signals have the form (after upmixing
on carrier of frequency ω (rad/sec))

sn,k(t) = eiωt
M−1∑
m=0

xn,m(k) gn(t− (kM + m)T ) , (1)

for n = 0, . . . , N − 1, where gn is the unit energy pulse
shaping function for transmitter n supported on [0, T ] and
xn,m(k) is a complex code sequence transmitted by trans-
mitter n for signal block k. The baseband quadrature re-
ceived signal at sensor n due to a single target reflection is
given by

rn,k(t) = σ(k)
N−1∑

`=0

eit(νn(k)+ν`(k))s`,k (t− (τn(k) + τ`(k)))

e−iω(τn(k)+τ`(k)) + wn,k(t) (2)

where σ(k) is an unknown complex quantity incorporating
the effects of medium attenuation and target reflectivity.
These variables are modelled as zero mean complex Gaus-
sian process independent from block to block. Here τn(k)
and νn(k) are the (one-way) delay and doppler from sensor
n to the target over the signal block k, and wn,k(t) is com-
plex Gaussian zero mean white receiver noise. We assume
that the duration of each signal block is small compared
to the target motion is sufficiently slow with respect to the
block length so that the delay and doppler are constant
over each signal block.

We assume that there is a single target located at polar
co-ordinates (r0(k), θ0(k), φ0(k)) during signal block k with
respect to the reference sensor located at the origin. The
delay τn(k) and doppler shift νn(k) as seen by sensor n are
related for each n to the reference delay and doppler seen
by the sensor at the origin (to linear terms, and assum-
ing that the target distance is much larger than the array
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Fig. 1. Array and Target Geometry

dimension) by

τn(k) = τ0(k)− ndρ0(k)
c

νn(k) = ν0(k)− ωndρ̇0(k)
c

, (3)

where

τ0(k) =
r0(k)

c

ν0(k) =
ωṙ0(k)

c
(4)

are the one-way delay and doppler to the reference sen-
sor. The wavenumber variable for this array geometry is
ρ0(k) = sin(θ0(k)) sin(φ0(k)). The target state variables
are denoted θ(k) = [τ0(k), ν0(k), ρ0(k), ρ̇0(k)].

III. Receiver Architecture

The overall system architecture is shown in figure 2.

Transmitter
Matched
Filter

CodeKF
Tracker Design

antenna arrays

Waveform code for next block of pulses

target track
raw data
estimates

Fig. 2. Radar Tracker System Architecture

In this paper, we only address the design of the gener-
alised matched filter, with performance evaluation (wrt the
Cramer-Rao bound) and code design discussed in [6]. The
code design problem for tracking systems is addressed in
[7].

We now describe the form of the generalised matched
filter. The log likelihood function associated with the mea-
surements from the N receive sensors for block k is

`k = −
∫ N−1∑

n=0

∣∣∣∣∣∣
rn,k(t)− σ

N−1∑

j=0

sj,k (t− τn(k)− τj(k))

e−iω(τn(k)+τ`(k)) eit(νn(k)+νj(k))
∣∣∣
2

dt(5)

where τn(k) and νn(k) are the (one-way) delay and doppler
associated with sensor n. Such a function is difficult to
maximise over the unknown parameters due to the cross
terms present in this superimposed signal model. Thus we
neglect these cross terms and use instead the statistic 1

ˆ̀
k =

N−1∑

n,j=0

a Re
{

e−iφ

∫
rn,k(t) s∗j,k (t− τn(k)− τj(k))

× e−iω(τn(k)+τ`(k)) e−it(νn(k)+νj(k)) dt
}
−N/2 a2 Ek ,(6)

where Ek is the total transmitted energy of the signal dur-
ing block k, and σ = a eiφ. Maximising directly over a and
φ yields the (approximate) MLEs

â =
1

NEk

∣∣∣∣∣∣
∑

n,j

χ
(k)
n,j(θ)

∣∣∣∣∣∣

φ̂ = arctan

[
Im

∑
n,j χ

(k)
n,j(θ)

Re
∑

n,j χ
(k)
n,j(θ)

]
, (7)

where

χ
(k)
n,j(θ) =

∫
rn,k(t) s∗j,k (t− τn(k)− τj(k))

× e−iω(τn(k)+τ`(k)) e−it(νn(k)+νj(k)) dt (8)

is the (phase compensated) cross ambiguity function be-
tween the received signal on antenna n and the transmit-
ted signal on antenna j over block k. Here the delay and
doppler terms τn(k) and νn(k) are related to the state vari-
ables θ via (3). Substituting in (6) yields

ˆ̀
k(θ) =

1
2NEk

∣∣∣∣∣∣

N−1∑

n,j=0

χ
(k)
n,j(θ)

∣∣∣∣∣∣

2

. (9)

The approximate MLEs for the delay-doppler and reflection
parameters 2 are obtained by maximising this function, ie

θ̂(k) = argmaxθ∈Θ(k)

∣∣∣∣∣∣

N−1∑

n,j=0

χ
(k)
n,j(θ)

∣∣∣∣∣∣

â(k) =
1

NEk

∣∣∣∣∣∣

N−1∑

n,j=0

χ
(k)
n,j(θ̂(k))

∣∣∣∣∣∣
, (10)

1The cross terms become insignificant as N →∞.
2We don’t use the reflectivity phase information here.
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SNR (dB) Bias Std. Dev.
r ṙ ρ ρ̇ r ṙ ρ ρ̇

∞ 0.14 41 0 0 0 0 0 0
40 -15 0.02 0 0 74 6.2 0 0
30 -28 31 0 0 175 14 0 0
20 -92 -0.15 0 0 350 3.9 0 0
10 -193 6.6 0 0 381 16 0 0

TABLE I

Bias and Std. Dev. of Estimates vs SNR

Pos’n Bias Std. Dev.
r ṙ ρ ρ̇ r ṙ ρ ρ̇

1 -92 -0.15 0 0 350 3.9 0 0
2 -178 -3.8 0 0.1 119 2.8 0 0.2
3 -120 -0.9 -1.5 0 226 3.0 1.1 0

TABLE II

Bias and Variance of Estimates for 3 target positions

where Θ(k) ⊂ R4 is the so-called validation gate. The
statistic (9) represents the magnitude of the coherent sum
of N2 matched filters. As we shall later see, neglecting the
cross terms in the likelihood function results in estimates
which can be significantly biased, especially for small ar-
rays. A correction scheme for reducing the bias in super-
imposed signal problems such as the one presently at hand
is described in [4].

IV. Simulation Examples

A single target starts at the point in the x − z plane at
r = 10 km, and φ = π/4, and moves at speed 167 m/s to-
wards the origin. At a distance of 1 km from the origin, the
target turns right and heads in the y direction at a speed of
200 m/s. Our first 3 examples consider the target param-
eter estimation at three points in the trajectory ; one near
the start, one at the point of turning, and one near the end.
For these examples, we chose an array of 3 elements, spaced
one-half wavelength. The carrier frequency was 5 GHz,
and pulse duration was 500 µsec. Identical raised-cosine
pulse shaping was used for each antenna. The temporal
block length was 8 pulses, and the pulse repetition interval
(PRI) was 67 msec. The target reflectivity had unit vari-
ance. We show in table I, the bias and standard deviation
estimates for the four state parameters for several values
of signal-to-noise ratio (SNR) 3 for the target at position 1.

Table II shows the bias and variance of the estimates for
the 3 target positions at SNR = 20 dB.

In order to assess the effect of array length on the sta-
tistical properties of the estimates, we repeated the ex-
periments for various array lengths at an SNR of 20 dB.
In all cases, the transmitted code was a random unitary

3We define SNR as the ratio of target reflectivity variance to noise
variance

N Bias Std. Dev.
r ṙ ρ ρ̇ r ṙ ρ ρ̇

3 -92 -0.15 0 0 350 3.9 0 0
7 -67 1.7 0 0 265 5.8 0 0
13 -18 0.2 0 0 143 4.7 0 0

TABLE III

Bias and Variance of Estimates for different array sizes

code, held constant for each of 100 independent realisa-
tions which were averaged to obtain the results presented
in table III. For array lengths of 3 and 7, the block length
was 8, whilst for array length of 13, the block length was
14 pulses. Target position 1 was used.

Figure 3 shows the ambiguity function for the transmit-
ted signal on antenna 1.

Fig. 3. Coded Signal Ambiguity Function

The second experiment deals with estimation of the tar-
get parameters over the complete trajectory. Here, a new
and randomly chosen unitary code was used for each signal
block. Figure 4 shows the true and estimated target range
over the trajectory. Note that the range estimates are the
raw estimates from the generalised MF ; there is no post-
detection tracking used. Figure 5 shows the radial velocity
estimates. The SNR was 20 dB and we used 3 elements
and a block length of 8.

A. Discussion

The above results show that for small array sizes, the
target parameter estimates are generally biased. This is
due to the fact that certain cross terms are neglected in
the formulation of the estimator. These terms are sig-
nificant for small arrays. The results shown in table III
however suggest that the bias problem may diminish as
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Fig. 5. Radial Velocity Estimation (3 elements, SNR = 20 dB)

the array size becomes larger. All experiments show that
the range estimates generally improve for higher SNR and
larger arrays, but the velocity estimation is problematic.
The problem with estimation of the velocity (and some-
times the wavenumber parameters) is due to a combination
of bias and the presence of local maxima in the estimation
statistic. This behaviour is particularly evident in figure 5,
where the lack of effective doppler gating results in the pa-
rameter estimates moving to an incorrect local maximum.
All these results should be considered with some degree of
caution as we have made no attempt to optimise the trans-
mitted codes, in particular, as such, no beamforming has
been performed.

V. Conclusions and Further Work

In this paper, we have proposed a new approximate max-
imum likelihood estimator for the parameters of a single
target when a multiple antenna radar is used. The pro-

posed estimator combines both the usual delay-doppler es-
timation with array beamforming, by the use of multiple
coded transmitter waveforms. We have examined the per-
formance of the estimator using random unitary transmit-
ter codes. The performance of the receiver in the absence of
any attempt to optimise the codes is problematic, however
results to be presented in [6], show significant improvement,
mainly due to the inherent use of near-optimal beamform-
ing as a result of the optimisation of transmitter code se-
lection.

In future work [6], we derive an approximate Cramer-
Rao bound for the receiver presented here, and use this
bound to optimise the choice of transmitter codes. We also
investigate incorporating bias correction using the scheme
proposed in [4]. The paper [7] is concerned with optimising
tracker performance when a Kalman filter based tracker
is used to process the raw parameter estimated from the
approximate ML receiver.
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Abstract— This paper addresses the problem of waveform
design for general diversity systems. The paper firstly in-
troduces a general model for such systems, and then con-
siders linear and nonlinear cases. Examples of each case
are given - in the linear case, the MIMO communications
design problem ; in the nonlinear case, the MIMO radar
waveform design problem. In the latter case, a simulation
example is provided which illustrates the potential benefits
which might be obtained. Finally, the paper concludes with
a brief discussion of the MIMO radar tracking problem.

I. Introduction

There has been considerable interest in the last several
years among wireless telecommunications researchers in the
use of diversity techniques to improve the capacity and per-
formance of such systems. In particular, the use of multi-
ple transmit and receive antennae has been demonstrated
to offer significant performance improvement in wireless
systems. More recently, the idea of exploiting diversity in
radar systems has also drawn attention. At this conference,
there were a number of important papers presented which
focused on various fundamental aspects of Multiple-Input,
Multiple-Output (MIMO) radar systems. Also, a confer-
ence dedicated to radar diversity and waveform design was
recently held in Edinburgh, UK, where many aspects of
MIMO radar were presented. We can expect that the area
of MIMO radar will receive an increasing amount of atten-
tion by researchers and research sponsors.

The purpose of the recent work in the area of MIMO
radar being conducted at the University of Adelaide is four-
fold : (i) Firstly we seek to understand how models used
in MIMO communications systems and associated trans-
mitter and receiver design methods, might be relevant to
the radar case. (ii) Secondly, we seek to study how to
design appropriate receiver structures for both the radar
and communications cases, and importantly, be able to of-
fer some guidance as to the statistical performance of such
receivers. (iii) Thirdly, we seek to address the transmit-
ter waveform design problem in each case. We envisage a
system whereby the transmitted waveforms are adaptively
derived from current system state information under some
performance criterion eg tracking MSE. (iv) Fourthly, we
are interested in how feedback information is to be sent
back to the transmitter in the case when such information
must be sent over capacity limited channels.

In [1], we considered channel modelling and receiver
design for MIMO communications. The proposed re-

ceiver used one-step predictions for the channel gains in-
corporated into a Per-Survivor Processing based detection
scheme. Both [2] and [3] dealt with MIMO transmit code
design for the communications problem. In these papers,
communications based criteria such as maximal distance
between codes and maximal diversity were applied. In [4],
channel tracking MSE was used as a code design criterion,
and was observed to offer better performance at low SNRs.
It was demonstrated in [5] that channel estimation MSE is
not the optimal criterion from the point of view of sym-
bol detection. We started to address the MIMO radar
problem in [6] where channel modelling and receiver de-
sign were considered in the single target case. Importantly,
the receiver structure considered incorporated a number of
constraints on the transmit codes in order to permit the
calculation of the Cramer-Rao bound on target parameter
estimation performance. This is required for parameterisa-
tion of the tracker following the parameter estimation step.

The purpose of this paper is to provide a general descrip-
tion of the MIMO code design problem, and to consider two
special cases. The first is the case where the model is linear
in the target/channel parameters and the MSE estimation
performance is time-invariant. An example is the commu-
nications problem as discussed in [4]. The second example
is the MIMO radar problem as considered in [6] in which
the target parameters appear in the model in a nonlinear
way. Here we extend that work to specify how the codes
may be adaptively chosen to optimise the target parame-
ter estimation. We then mention how the tracking problem
is set up, with results to be provided in work to be pub-
lished [7]. Finally, we conclude with some open research
questions.

II. MIMO System Models

We assume a channel/target model with linear dynamics,
and generally, non-linear measurements of the form

xk+1 = A xk + B uk

yk = fk(xk) + vk , (1)

where xk ∈ CN is the target/channel state, uk ∈ CP is
the white state noise process, yk ∈ CM is the white mea-
surement noise process, and vk ∈ CM denotes the measure-
ment noise process. We assume that the matrix A is stable,
and that the noise processes uk and vk are zero mean Gaus-
sian with known covariance matrices Q and R respectively.



The matrices A and B specify the target/channel dynamics
whilst the functions fk(.) describes the mapping from the
target state to the observed measurements.

A. The Linear Case

In the linear case, fk(x) = Ck xk, where Ck are M ×N
matrices. An example of the linear case is in the MIMO
communications problem, [4] with n transmit antennae and
` receive antennae. The states xk are the complex gains 1

associated with a Rayleigh/Ricean fading channel with n
inputs and ` outputs, and have dimension N = n`. The
measurement vector yk has length M = m` where m is
the temporal block length. The matrix Ck has the form
Ck = I` ⊗Xk P where Xk is a sequence of unitary m × n
matrices which are chosen from a set U of cardinality 2p in
order to encode p input message bits per temporal block.
Here P is a fixed precoder matrix of size n×n. Our design
task is to choose M based on the a priori statistics of the
channel, in order to minimise in an appropriate sense, the
channel estimation error. The MLE of the state term Ck xk

given yk is simply yk itself, so in reference to the block
diagram (figure 1), the MLE block is trivial. We return to
this problem in section III.

B. The Nonlinear Case

In the nonlinear case, we construct an approximate MLE
of xk given each measurement yk. Such an estimate ne-
glects the a priori dynamics of the state, these being taken
into account in the tracker. We will assume that these esti-
mates are given by x̃k = g(yk) for some function g(.) which
is generally nonlinear. For example, g(.) might represent
a generalised matched-filter correlator such as will be de-
scribed in the MIMO radar example in section IV. Follow-
ing the idea of Kershaw and Evans [8], we characterise the
statistical performance of the estimator by assuming that
it is unbiased and efficient, so that x̃k = xk + wk where
E{wk} = 0 and E{wk wT

k } = F−1 where F is the Fisher
information given by

F = −
[
∂2p(yk|xk)
∂xk∂xT

k

]
. (2)

This simplifying assumption is made because it is gen-
erally not possible to determine the exact statistical per-
formance for any exact or approximate MLE in the non-
linear case. In general, F depends on the state xk as well
as the underlying code Ck (specified in the form of fk(.)).
One possible objective might be to choose the code to
maximise the objective function J(Ck, xk) = Tr(FWF ) =
‖FW 1/2‖2F , where W is a diagonal, state-dependent ma-
trix. Of course, since we don’t know xk we need to replace
its value by an estimate (perhaps from the tracker) and per-
form the optimisation in a block by block adaptive manner.
We return to this problem in section IV

1In the following, we use real variables for simplicity reasons, so the
model for the complex case is built from the real and imaginary parts

III. MIMO Communications Example

In a communications problem, the overall code design
objective is to minimise the resulting symbol detection er-
ror probability. This is an unsolved problem in general,
although results exist for the temporally uncorrelated and
asymptotically high SNR case (eg [9], [10]). Here we take
the approach of minimising the channel estimation mean-
square error, although it is known that this does not gen-
erally lead to optimal symbol detection performance [5].
However the codes so designed can offer improvement over
the existing designs in some cases, eg at low SNR. The
optimal tracker is given by the Kalman predictor (causal-
ity is generally required for any receiver incorporating the
channel estimates)

x̂k+1|k = A (I −GkCk) x̂k|k−1 + Gk yk (3)

where the gain Gk is given by

Gk = ΣkCT
k

(
CkΣkCT

k + R
)−1

, (4)

where Σk satisfies the Riccati equation

Σk+1 = A
(
Σk − ΣkCT

k

(
CkΣkCT

k + R
)−1

CkΣk

)
AT

+BQBT . (5)

We can show that Tr(Σk) is asymptotically constant, and
is independent of the choice of code Xk and only depends
on the (fixed) precoder P . Indeed, Tr(Σk) → Tr(Σ) where
Σ is the solution to the algebraic Riccati equation

Σ = A
(
Σ− ΣPT

(
PΣPT + R

)−1
PΣ

)
AT + BQBT . (6)

In [4], we show how to compute the Jacobian (first
derivative) of Σ with respect to P . We then define a gradi-
ent projection scheme for minimising Tr(Σ) over P subject
to the power constraint Tr(PPT ) = 1. These results rely
on methods of matrix differential calculus and perturbation
theorems for eigenvectors. The reader is referred to [4] for
details and some simulation results.

IV. MIMO Radar Example

In this section, we describe the signal model and receiver
for a MIMO single target problem. In the MIMO radar
problem, the baseband signal transmitted on antenna j for
temporal block k has the form

sj,k(t) =
m−1∑
q=0

Xj,q(k) gj(t− (km + q)T ) , (7)

where the gj(.) are unit energy pulse shaping functions
supported on [0, T ], and X(k) is the space-time code sent
for block k. The baseband received signal on antenna r is



yr,k(t) = a(k)
n−1∑

j=0

eit(νr(k)+νj(k)) sj,k(t− τr(k)− τj(k))

×eiφr,j + wr,j(k) . (8)

Here τj(k) and νj(k) are the one-way delay and doppler
between antenna j and the target assumed constant over
the duration of each block, and a(k) is the magnitude of the
target reflectivity coefficient together with the path loss.
The terms φr,j are uniform iid variables on [−π, π]. The
delay and doppler parameters contained in (8) are functions
of the delay and doppler respectively to some reference an-
tenna, together with the array geometry and target motion.
More precisely, for a uniform linear array with spacing d
metres, to linear terms, 2

τj = τ0 − jdρ/c

νj = ν0 − jdωρ̇/c , (9)

where τ0 = r/c and ν0 = ṙω/c are the reference delay and
doppler, ρ is the spatial wavenumber, and ρ̇ its time deriva-
tive. Here r and ṙ are the radial distance from the reference
antenna to the target and its time derivative respectively,
ω is the carrier frequency (rad/s), and c is the propagation
speed. We will denote the state of the system (target) by
the vector xk = [a(k), r(k), ṙ(k), ρ(k), ρ̇(k)]T . Notice
that (8) is a nonlinear mapping from the target state to
the observed signal.

A. Approximate MLE

In [6], we described a generalised matched filter receiver
for this MIMO radar model. The data likelihood con-
tains cross-terms between the individual receive antenna
signal models which make exact MLEs impractical to ob-
tain. These cross terms are known to tend to zero as the
data length goes to infinity. However, the receiver proposed
in [6] imposes a number of constraints on the transmitter
MIMO codes, among which is that they be unitary. This re-
sults in the suppression of the aforementioned cross terms,
and thus this receiver is a better approximation to the ML
one.

More specifically, the data log likelihood for a block of
received data is given by

` = −
∫ N−1∑

n=0

∣∣∣∣∣∣
rn(t)− a

N−1∑

j=0

sj (t− τn − τj) eiφn,j

×eit(νn+νj)
∣∣∣
2

dt . (10)

Neglecting the cross terms, we use instead the approxi-
mate log likelihood

2In the following, we drop the time block index k

ˆ̀= a

N−1∑

n,j=0

Re
{
e−iφn,j χn,k(τn + τk, νn + νk)

}− N2a2

2

(11)

which is maximised by maximising the detection statistic

η(r, ṙ, ρ, ρ̇) =
N−1∑

j,k=0

|χj,k [(r − (j + k)dρ)/c,

(ṙ − (j + k)dρ̇)ω/c]|2 , (12)

where

χj,k(τ, ν) =
∫

rj(t) s∗k(t− τ) e−itν dt , (13)

are the outputs of the generalised matched filters for each
receive antenna rj , corresponding to each transmitted sig-
nal sk. Approximate ML estimates for r, ṙ, ρ and ρ̇ are
obtained by maximising (12), and an estimate of a is ob-
tained from that maximum value of η. Phase estimates can
also be obtained but are not used here.

In [6], we were able to evaluate the Fisher information
matrix corresponding to (8) by imposing a number of con-
straints on the signal codes. Indeed, these constraints have
the form of moments

XXH = I

XΓjX
H = Λj , (14)

for j = 1, 2, where the Γj are specified diagonal, posi-
tive matrices which depend on the pulse shaping functions,
and the Λj are free diagonal (positive) matrices. In this
case, the Fisher information F is independent of the target
state, and only depend on the choice of code X via the
free diagonal terms of Λ1 and Λ2. Thus the optimisation
task is to maximise J(Λ1, Λ2, x) = ‖F (Λ1,Λ2) W 1/2(x)‖2F ,
where W is a possibly state (ie x) dependent positive di-
agonal weighting subject to the constraints (14). We used
a projection gradient approach, but the issues concerning
the feasibility of the constraints (14) and the convergence
of the scheme remain open questions which we aim to ad-
dress in [7].

We simulated the system described, with the target lo-
cated 10km from the antenna array, moving towards the
array at speed 267 m/s, at wavenumber 0.1, and wavenum-
ber derivative 0.01. The results shown in table 1 show the
proportional errors obtained over 50 simulation runs each
consisting of 100 pulse blocks. We used 3 antennas and a
temporal block length of 4 pulses. Raised cosine shaping
with pulse duration 50 msec was used. The SNR was 20 dB
(total energy per pulse divided by noise variance per sen-
sor). We compared 2 code sets - one random unitary codes,



and the other optimal codes chosen according to the above
criterion with weighting matrix W = diag(0.01, 1, 10, 10).
A significant improvement is noted when the optimal codes
are used.

Parameter range radial vel. ρ ρ̇
Opt bias (%) 2.5 0.02 0.6 1.5
Opt stdev (%) 1.7 0.004 1.4 1.5
Ran bias (%) 4.3 0.07 0.8 2.5
Ran stdev (%) 3.7 0.03 2.6 2.2

TABLE I

Bias and Standard Deviation Estimates for Optimal and

Random Codes

B. Discussion

As shown by Furhmann [11], the use of unitary codes
results in no directivity in the transmitted energy which
whilst desirable initially in the absence of a priori infor-
mation about the target state, is clearly sub-optimal when
estimates of the target state are available. However, we
found it necessary to impose a number of simplifying con-
straints on the codes, including the unitary one, in order to
evaluate, even approximately, the statistical performance
of the (approximate) MLE. More work is thus required in
the area of receiver performance evaluation so that the uni-
tary constraints might be relaxed. Alternatively, we could
explicitly add beamforming into the code design problem.
These are areas for ongoing research.

V. Signal Design for Tracking

For tracking problems, we feed the “raw” estimates of
the target state x̃k to a Kalman filter derived from the
state space model

xk+1 = A xk + B uk

x̃k = xk + wk (15)

where wk ∼ N (0, F−1). The resulting tracking error co-
variance is given (approximately) by the Riccati difference
equation

Σk+1|k = AΣk|kAT + BQBT

Σk+1|k+1 = Σk+1|k − Σk+1|k
(
Σk+1|k + F−1

)−1
Σk+1|k

(16)

where F depends on the chosen code as described in the
previous section. Thus we seek to select Xk+1 by minimis-
ing Tr{Σk+1|k+1} with xk+1 replaced by the current one
step prediction state estimate x̂k+1|k. Matrix differential
calculus can be used to obtain the Jacobian of Tr(Σk+1|k+1)
wrt the Λ1 and Λ2 matrices, and an alternating convex pro-
jection gradient algorithm thus derived. We describe this
approach in [7].

VI. Conclusions and Future Research

In this paper, we have introduced a general model for
waveform design in MIMO diversity systems. We have
considered both linear and non-linear models, and have
indicated methodologies for optimal code design in each
case. Examples of designs for MIMO communications sys-
tems (linear), and for MIMO radar systems (nonlinear)
have been given. In the latter case, we have included a
simulation example illustrating the potential benefit of de-
signing the transmitter code to optimise the performance
of an approximate ML receiver. Finally we have indicated
how to design optimal codes for tracking systems.

Several open questions remain, including receiver perfor-
mance characterisation for non-unitary codes, convergence
of numerical schemes for code optimisation, using codes
chosen from discrete sets, performance analysis of tracking
systems and the implementation of feedback information
in the system.
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Abstract— This paper addresses the problem of transmitter
design for a single target MIMO radar system. The transmitted
space-time codes are unitary apart from the inclusion of a
transmit beamformer. The paper demonstrates that the use
of unitary codes leads to a simple coherent correlations-based
maximum-likelihood receiver yielding unbiased estimates of the
target range and wavenumber, and their time derivatives. The
transmitter codes are chosen to maximise the Fisher information
for the model. This leads to an alternating projection gradient
adaptive algorithm for dynamic code design. The paper argues
that proper choice of beamformer phases can lead to efficient
estimators, thus validating the optimisation methodology.

I. INTRODUCTION

In recent years, there has been a rapid increase in interest in
the use of multiple input - multiple output (MIMO) systems
for radar detection, estimation and tracking. Our recent
work has focused on receiver design [1], and transmitter
design [2]. In each of these papers, the transmitter codes
were constrained to be orthogonal, leading to a simple
derivation of the maximum likelihood (ML) receiver.
Additional orthogonality constraints were included to permit
the derivation of the corresponding Fisher information for the
model. Following the methodology proposed by Kershaw and
Evans [7] in the SISO case, we attempt to optimise system
performance by maximising the Fisher information of the
model by appropriate choice of codes. In the SISO case,
the ML estimators for range and Doppler are efficient for
finite sample sizes, thus validating this approach. However, it
is unclear whether this property holds for the MIMO case,
where the time derivatives of range and Doppler are also
estimated. Another important issue is that the use of unitary
codes precludes directivity being introduced in the transmitter
beamformer [6]. This is obviously a clear deficiency in a
MIMO design approach.

In this paper, we include explicit (linear) transmit
beamforming in addition to unitary space-time coding.
However, retaining orthogonality between transmitted
waveforms (so that a simple ML receiver can be designed),
means the resulting Fisher information is independent of the
beamformer phases. Thus it is unlikely, in general, that the
resulting estimates are efficient. A natural question arises
as to whether efficiency can be attained by “steering” the
transmitter beam towards the expected target location. In a

more general tracking context [3], the tracker can assist with
this operation.

The layout of the paper is as follows. Firstly we introduce
the coherent signal model for single target MIMO radar, and
thus derive a correlation based ML receiver. We then provide
a characterisation of the receiver performance in terms of the
transmit codes (including beamformer). We then introduce an
procedure for the design of optimal codes. Simulation results
will be presented at the meeting, and are also available at [4].

II. SIGNAL MODEL

We consider a radar system with N transmit and N receive
antennae. The baseband transmitted signal for temporal blockk and transmit antenna n is given by

sn;k(t) = M�1X
m=0 Yn;m(k) gn(t� (kM +m)T ) ; (1)

where M � N is the number of pulses in each temporal
block, T is the pulse duration and gn is the baseband pulse
shaping function for antenna n, which is assumed real and
twice differentiable, supported on [0; T ], and with gn(0) =gn(T ) = 0. The quantity M denotes the pulse repetition
interval (PRI). Here, Y (k) 2 CN�M is the transmitted space-
time code for block k, given by

Yn;m(k) = Wn(k) Xn;m(k) ; (2)

where X(k) 2 CN�M is an unitary code (ie XXH = IN ),
and Wn(k) denotes the transmitter beamformer weights
for block k. The signals are modulated onto a carrier with
frequency f0 (Hz).

We assume a single target located at a radial distance r with
respect to the origin located at a reference element of the
transmit array. For simplicity of presentation, we assume in the
following, that the transmit and receive arrays are uniformly
spaced linear arrays located along the y axis, and are co-
located. The case where there is a constant distance between
the arrays is easily dealt with. We address the case where
transmit and receive arrays are in relative motion in [5]. To



linear terms, the two-way delay and Doppler from element n
to element m are

�n;m(k) = 2r(k)� (n+m)d�(k)c�n;m(k) = (2 _r(k)� (n+m)d _�(k)) f0c ; (3)

where d is the array spacing, c the propagation speed, �
is the target wavenumber, with _� being its time derivative,
and _r is the radial target velocity. For the purposes of target
tracking, we shall define the target state to be the vector� = (a; �; r; _r; �; _�) which is a function of the temporal block
index k. The variables (a; �) are defined below and (r; _r; �; _�)
are defined in [1].

The basebanded received signal at antenna m for transmit
block k for a fully coherent system 1 is

rm;k(t) = a(k) ei�(k) N�1X
n=0 sn;k (t� �n;m(k))

� e2�it�n;m(k) e�2�if0�n;m(k) + �m;k(t) ; (4)

where a(k) � 0 is the target reflectivity amplitude, and �(k)
denotes the associated phase shift. The quantities �m;k(t)
represent receiver noise, and are assumed to be zero mean,
white, Gaussian processes with identical variance �2, and in-
dependent between receivers. The approximate log likelihood
(neglecting cross terms) is (dropping the k index for clarity)
[8]

` � a�2 Re(e�i� N�1X
n;m=0�n;m (�n;m; �n;m))� a2N2�2 ;(5)

where we assume that ksn;kk2 = pn;k, with
Pn pn;k = 1 for

all k, and

�n;m(�; �) = e2�if0� Z rm(t) s�n(t� �) e�2�i�t dt ; (6)

denotes the matched filter for transmit waveform n received on
antenna m. Maximising (5) over a and � (assumed determinis-
tic and unknown) we obtain the sufficient statistic (generalised
matched filter), written as a function of the target state

�(r; _r; �; _�) = 12N�2
�����
N�1X
n;m=0�n;m (�(�); �(�))�����

2 ; (7)

which is an coherent sum of the outputs of the N2 matched
filters. In order to estimate the target state, we perform a con-
strained maximisation of (7) subject to the constraints given
in (3). This generally requires a search over an appropriately

1We assume all transmitters and receivers are phase locked to a reference
clock.

chosen subset of the 4 dimensional parameter space. The mean
value of the statistic is

E �(r; _r; �; _�) = a2N2�2 + 1=2 : (8)

We thus observe a linear increase in the mean detection
statistic with the number of antenna provided the target signal
to noise ratio is sufficiently large.

III. CHARACTERISING RECEIVER PERFORMANCE

In earlier work, [1] we derived the Fisher information matrix
for the receiver described above when the transmit codes were
unitary. Part of this analysis also showed that the cross terms
neglected in the derivation of (7) are suppressed by the use
of unitary codes. Thus our receiver achieves close to ML
performance in this case. It is easy to demonstrate that the
inclusion of the transmit beamformer W does not alter this
property. The beamformer is required because no directivity
can be achieved (apart from that inherent in the array elements)
with unitary codes [6]. As shown in [7], for the SISO case,
the Fisher information depends essentially on the first two
time and frequency moments of the transmitted signal. In
order to find tractable form for the Fisher information in the
MIMO case, we need to make a number of orthogonality
assumptions on the transmit signals and their moments as in
[1]. It is a natural question to ask as to whether it is useful
to minimise a lower bound on receiver performance (Cramer-
Rao bound). Clearly, if the receiver is consistent, then it is a
sound approach. In the SISO case, it is known [8], that the
matched filter (ambiguity function peak) yields unbiased and
consistent estimators for delay and Doppler (if side lobes are
negligible). However, it is not clear that maximisation of (7)
provides consistent estimators of � for finite sample sizes. We
have, however demonstrated that these estimators are unbiased.

IV. OPTIMISING RECEIVER PERFORMANCE

We shall use as our measure of receiver performance, the cost
function

J(Y ; �) = log det F (Y ; �) ; (9)

where F is the Fisher information matrix

F = �E �@2`(Y ; �)@�2
� ; (10)

which is strictly positive definite. This quantity is a function
of the quantities �n;m, and thus of the state variables r and�, as well as the signal waveforms, and thus of the codeYn;m. This cost function is chosen because maximisation of J
implies minimisation of the Cramer-Rao lower bound on the
parameter estimation uncertainty. There are four constraints to
be met. Firstly, the beamformer weight magnitudes specify the
transmit powers for each antenna, ie jWnj2 = pn = q2n, withPn q2n = 1. We also have the code constraints



xHk xn = �n;kxHk �t xn = 0; 8 n 6= kxHk �tt xn = 0; 8 n 6= k ; (11)

where �t and �tt are diagonal matrices specified by the
signalling pulse, and the xn are the rows of X (ie the sequence
transmitted on antenna n. We can write

F (q;X ; �) =Xn q2n �An(�) +Bn(�)xHn �txn + Cn(�)xHn �ttxn� ;
where An(�); Bn(�); Cn(�) are 6� 6 matrices whose entries
can be determined from the form of the second derivatives of` wrt a; � and �. We thus have

Vec dF = 2ReXn q2n ((�txn 
Bn(�)) + (�ttxn 
 Cn(�)))
�dxn+2Xn qn Vec �An(�) +Bn(�)xHn �txn + Cn(�)xHn �ttxn�(12)

�dqn : (13)

Thus [9]

dJ(q;X ; �) = TrF�1 Vec dF ; (14)

permits the gradient of J wrt q and X to be determined. We
can thus define a projection gradient scheme for numerical
constrained maximisation of J using the forms of the projec-
tions given in appendix III, applied to the constraints (13). LetX̂j and q̂j denote estimates of the parameters at iteration j,
then we perform the updates

Vec ~Xj = Vec X̂j + � Tr F�1(q̂j ; X̂j ; �̂)
� @Vec F (q̂j ; X̂j ; �̂)@Vec Xq̂j+1 = q̂j + � Tr F�1(q̂j ; X̂j ; �̂)
� @Vec F (q̂j ; X̂j ; �̂)@qX̂j+1 = (Pu P�t Ptt)` ~Xj ; (15)

where � is a small scalar step size, and � is an estimate of the
target state which is generally supplied by the post-receiver
tracker [3]. The projection steps are repeated ` times until
there is little change in the resulting matrix.

V. CONCLUSION

This paper has derived a simple maximum likelihood receiver
for MIMO radar systems with unitary space-time codes and
explicit transmitter beamforming. The transmitter codes are
chosen to maximise the Fisher information associated with
the MIMO model. An gradient projection algorithm has been
proposed to solve this constrained optimisation problem. An

important assumption underlying the approach is that reduc-
tion of the CRB leads to improved performance. Whilst this
is true in the SISO case, because the delay-Doppler estimates
are efficient in that case, it is not clear that this property
holds in the orthogonal coded MIMO case. We have seen that
the CRB is independent of the transmit beamformer phase,
suggesting lack of efficiency of the estimates. Thus explicit
transmit beamforming is argued to be essential in this context.
In simulation results to be presented at the meeting (and
available at [4]), we investigate this issue in detail.
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APPENDIX I
DERIVATION OF RECEIVER CRB - OUTLINE

In order to compute the Fisher information for the model (5),
we need to evaluate the first and second order derivatives of�n;m(�; �). These are



@�n;m@� = �2�ie2�if0� Z t rm(t) s�n(t� �) e�2�i�t dt
@�n;m@� = �e2�if0� Z rm(t) @s�n@t (t� �) e�2�i�t dt

+2�if0�n;m(�; �)@2�n;m@�2 = �4�2e2�if0� Z t2 rm(t) s�n(t� �) e�2�i�t dt
@2�n;m@�2 = e2�if0� Z rm(t) @2s�n@t2 (t� �) e�2�i�t dt

�2�if0e2�if0� Z rm(t) @s�n@t (t� �) e�2�i�t dt
+2�if0 @�n;m@� (�; �)@2�n;m@�@� = 2�ie2�if0� Z t rm(t) @s�n@t (t� �) e�2�i�t dt
+2�if0 @�n;m@� (�; �) : (16)

We then substitute for rm(t) from (4), and take expected
values. For example,

E �n;m (�n;m; �n;m) = a ei� N�1X
k=0 e2�if0(�n;m��k;m)

Z sk(t� �k;m) s�n(t� �n;m) e�2�it(�k;m��n;m) dt : (17)

We assume that the differential time and frequency shifts
across the array are negligible compared to the signal dura-
tion and bandwidth, and that signals transmitted on different
antennas are orthogonal. Thus

Z sk(t� �k;m) s�n(t� �n;m) e�2�it(�k;m��n;m) dt
� Z jsn(t)j2 dt �k;n ; (18)

and thus

E �n;m (�n;m; �n;m) � a ei� pn : (19)

This implies that the expected value of the test statistic

This process is repeated with the terms in (16), assuming the
orthogonality properties detailed in appendix II to give :

E @�n;m@� (�n;m; �n;m) � �2�iaei� �ksnk2t + �n;m pn�
E @�n;m@� (�n;m; �n;m) � 2�if0 aei� pn
E @2�n;m@�2 (�n;m; �n;m) � �4�2aei� ��ksnk2t2 + 2�n;m ksnk2t + �2n;mpn�
E @2�n;m@�@� (�n;m; �n;m) � aei� �4�2f0 ksnk2t�2�i hsn; s0nit)E @2�n;m@�2 (�n;m; �n;m) � aei� ��4�2f20 pn + hsn; s00ni�

(20)

Thus we can determine the Fisher information terms :

�E @2`@r2 = 4a2Nc2�2 �4�2f20 + cg�
�E @2`@ _r2 = 16a2�2f20c2�2 X

n;mUn;m
�E @2`@�2 = a2d2c2�2 �4�2f20 + cg�

 NXn n2 pn
+N(N � 1)Xn n pn + N(N � 1)(2N � 1)6

!

�E @2`@ _�2 = 4�2a2d2f20c2�2 X
n;m(n+m)2 Un;m ;

(21)

where cg is a constant depending only on the pulse g. In (20)
and (21),

Un;m = ksnk2t2 + 2�n;m ksnk2t + �2n;mpnhsk; snit = Z t sk(t) s�n(t) dt = �Y �tY H�k;n
hsk; snit2 = Z t2 sk(t) s�n(t) dt = �Y �ttY H�k;n :(22)

We can also compute the mixed second order derivatives of` which are not shown here. We note that all mixed second
order partials wrt a are zero.

We can also show that the expected value of all first order
derivatives of ` evaluated at the true parameter values, are
zero thus demonstrating that estimates are unbiased.

APPENDIX II
WAVEFORM CONSTRAINTS

We need to have < sn; sk >= �n;kpn, where pn > 0 is the
energy transmitted on antenna n each block. This leads directly
to the constraint



Y Y H = W WH = � = diag (p0; : : : ; pN�1) ;(23)

where we assume that the baseband pulses gn(t) are identical
for each n, are supported on [0; T ], and have unit norm. HereW is an N �N diagonal matrix with the array weights on its
diagonal, and � is a diagonal, positive definite matrix which
specifies the transmit powers pn. Unity total transmit energy
implies that Tr(�) = 1. The second constraint is that

Z t sn(t) s�k(t) dt = qn �n;k , Y �t Y H = �t ; (24)

where �t is a diagonal, positive definite matrix with elements

[�t]nn = Z t jg(t� nT )j2 dt = Z t jg(t)j2 dt+ nT ; (25)

and �t is a diagonal, positive definite matrix. The next
constraint is

Z t2 sn(t) s�k(t) dt = un �n;k , Y �tt Y H = �tt ; (26)

where �tt is a diagonal, positive definite matrix with elements

[�tt]nn = Z t2 jg(t� nT )j2 dt ; (27)

and �tt is a diagonal, positive definite matrix.

The terms

Z sn(t) @s�k(t)@t dt = X
`;m Yk;` Y �n;m

� Z g(t� `T ) @g�@t (t�mT ) dt (28)

are zero for all k; n because if g is real, and g(0) = g(T ) = 0,
the integral on the rhs of (28) is identically 0 for all ` and m.

Consider now

� Z sn(t) @2s�k(t)@t2 dt = �Y �ff Y H�n;k
(29)

where �ff is a diagonal matrix with elements

[�ff ]n;n = � Z g(t) @2g�@t2 (t) dt = @g@t
2 ; (30)

under the assumption that g(0) = g(T ) = 0. Notice that�ff is proportional to the identity matrix, so the required
orthogonality constraint is met by virtue of (23).

The final constraint is that

Z t sn(t) @s�k@t (t) dt (31)

is zero whenever k 6= n. This follows from the property

Z t g(t� `T ) @g�@t (t�mT ) dt = 0 (32)

for all ` 6= m. When ` = m, we have that

Z t g(t�mT ) @g�@t (t�mT ) dt = Z t g(t) @g�@t (t) dt
= �1� Z t g�(t) @g@t (t) dt (33)

leading to the fact that the integral on the lhs equals -1/2. Thus
this constraint is also met by virtue of (23).

APPENDIX III
APPROXIMATION BY ORTHOGONAL MATRICES

Suppose Y 2 CN�M with M � N is given and has full
rank N . We seek X 2 CN�M satisfying X�XH = D where� > 0 is Hermitian and is given, and D > 0 is a free diagonal
matrix, such that kX � Y k is minimised. Let

Y =
26664

yT1yT2
...yTN

37775 ; X =
26664

xT1xT2
...xTN

37775 : (34)

Consider now the constraint X�XH = D. Since � > 0, we
can find V 2 CM�M such that � = V V H with V > 0.
Then XV = � U where � = D1=2 is a free diagonal matrix,
and U is any N �M matrix satisfying UUH = I . Let U =[ u1 � � � uN ] with each ui 2 CM . Thus X = � U V �1
and

kY �Xk2 = Tr �Y Y H ��� Y V �H UH�� Tr �� U V �1 Y H + j�j2 U ��1 UH� : (35)

We minimise this quantity over choice of diagonal �. We find
the optimal � = diag(�1; : : : ; �N ) with

�i = �U V �1 Y H�ii[U ��1 UH ]ii : (36)

Then

kY �Xk2 = Tr �Y Y H�� NX
i=1

���U V �1 Y H�ii��2[U ��1 UH ]ii ; (37)

which we now minimise over unitary N � M matrices U .
A Lagrangian approach yields the necessary condition U =� Y V �H , where � is a free Hermitian N � N matrix.
Thus I = U UH = � Y ��1 Y H �H , or ��1 ��H =Y ��1 Y H . We can thus choose � = G�1 where G is the
unique symmetric square root of Y ��1 Y H . Then X =



� G�1 Y ��1. We can also show that X is unique and
is independent of the choice of V . We denote the mapping
(projection) by X = P�(Y ). Simulations suggest that P� is
a contraction mapping on RN�M with Frobenius norm. In
the unitary case, where � = D = I , the optimal solution isX = G�1 Y where G is the (unique) symmetric square root
of Y Y H .
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Outline of the Program

• → Fundamental Signal Design Issues for MIMO Radars

• → MIMO System exploits spatial and temporal diversiy

• → Pulse Coding – Code Design to yield a simple ML
receiver (correlation based)

• → Permit Optimisation of receiver performance based on
CRLB: Key Issue Efficiency of the estimates

• → Optimisation leads to constraints relating to moments
and inner products of signal waveforms
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System Architecture

Transmitter
Matched
Filter

CodeKF
Tracker Design

antenna arrays

Waveform code for next block of pulses

target track
raw data
estimates
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Target Dynamics

x

y

z

o

φ

θ

r

target

array

State varables:Θ(k) = (r(k), ṙ(k), ρ(k), ρ̇(k))T

with ρ(k) = sin θ(k) sin φ(k)

Time evolution:

Θ(k + 1) = A Θ(k) + B w(k)

where W (k) Gaussian white noise process.
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Coding of Pulse
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Transmit Signal Model

Baseband signal forN array elements

sn,k(t) =
M−1
∑

m=0

Yn,m(k) gn(t − (kM + m)T )

where M ≥ N and k pulse-block number.

Y (k) ∈ C
N×M : transmittedspace-time code

Yn,m(k) = Wn(k) Xn,m(k)

– p. 1/1



Space - Time Coding

Transmitted space-time code for pulse-blockk

Y (k) ∈ C
N×M

Yn,m(k) = Wn(k) Xn,m(k)

Indices – n array elementm sub-pulse number ink-th block

X(k) ∈ C
N×M : Orthogonal code ie XXH = 1

N
IN

Wn(k): Array Beamformer Weights for pulse-blockk

NB. Orthogonal code enables directivity in Beamformer in
contrast to Unitary code.
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Delay and Doppler across array

The two-way delay and Doppler terms for signal
transmission from elementn to elementm after
reflection from a single target are

τn,m(k) =
2 r(k) − (n + m) d ρ(k)

c

νn,m(k) =
(2 ṙ(k) − (n + m) d ρ̇(k)) f0

c

f0 is the carrier frequency
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Received Signal at Array

The basebanded received signal at antennam for
transmit blockk for a fully coherent systema is

rm,k(t) = a(k) eiφ(k)
N−1
∑

n=0

sn,k (t − τn,m(k))

× e2πitνn,m(k) e−2πif0τn,m(k) + ξm,k(t)

a(k) ≥ 0 target reflectivity amplitude andφ(k) associated phase shift.
ξm,k(t) receiver noise Gaussian processes with identical varianceσ2.

aWe assume all transmitters and receivers are phase locked toa ref-

erence clock.
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Likelihood Function

The method of correlation between the transmitted and received

signal leads to the log likelihood function as

ℓ ≈
a

σ2
Re

{

e−iφ

N−1
∑

n,m=0

χn,m (τn,m, νn,m)

}

−
a2N

2σ2

where we assume‖sn,k‖
2 = pn,k with

∑

n pn,k = 1 ∀ k and

χn,m(τ, ν) = e2πif0τ

∫

rm(t) s∗n(t − τ) e−2πiνt dt

which is the generalised matched filter.

This is an approximate form since the cross terms are neglected.
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Maximum Likelihood Estimate

Maximisation of the likelihood functionℓ gives the sufficient

statistic ( the generalised matched flier) as a function of the target

state in the form

η(r, ṙ, ρ, ρ̇) =
1

2Nσ2

∣

∣

∣

∣

∣

N−1
∑

n,m=0

χn,m (τ(θ), ν(θ))

∣

∣

∣

∣

∣

2

(1)

This form is acoherent sum of the outputs ofN 2 matched filters.

We optimiseη subject to the delay and Doppler constraints for

the given target. The mean value of the statistic is

E η(r, ṙ, ρ, ρ̇) =
a2N

2σ2
+ 1/2 . (2)

Thus a linear increase of the mean detection statistic as a

function of the number of antennae elementsN is obtained.
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Receiver Performance

Cost function

J(Y ; θ) = log det F (Y ; θ)

whereF is the Fisher information matrix

F = −E

{

∂2ℓ(Y ; θ)

∂θ2

}

,

which is strictly positive definite. This quantity is a function of
the quantitiesτn,m, and thus of the state variablesr andρ, as well
as the signal waveforms, and thus of the codeYn,m.
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Performance Optimisation

The cost functionJ is chosen because its maximisation implies

minimisation of the Cramer-Rao lower bound on the parameter

estimation uncertainty. There are four constraints to be

met.Firstly, the beamformer weight magnitudes specify the

transmit powers for each antenna, ie|Wn|
2 = pn = q2

n, with
∑

n q2

n = 1. We also have the code constraints

xH
k xn = δn,k

xH
k Γt xn = 0, ∀ n 6= k

xH
k Γtt xn = 0, ∀ n 6= k ,

whereΓt andΓtt are diagonal matrices specified by the
signalling pulse, and thexn are the rows ofX (ie the sequence
transmitted on antennan). – p. 1/1



Conclusion
• space-time coding leads to a new design concept for adaptiveradar

• estimates are unbiased so that CRLB can be utilised for performance

measure

• processing can be done at individual antenna elements – reduces load

on central processor for real-time implmentation

• this formulation can be generalised for netcentric radars
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Open Problems
• Are the constraints compatible ?

• How do we find the best code ?

• Is the receiver efficient? – Kershaw and Evans proves this
for SISO.

• How does one maximizeη in the presence of local maxima?

– p. 1/1
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